On the other hand, movements using free weights occur in a three-dimensional plane, while most weight machines allow movement only in a single plane. With machines, the movement is guided, so only the major muscles required to perform the movement are used. With free weights, the added task of balancing the weights in the three-dimensional plane recruits other functional muscles that machines do not recruit.
Clients new to weight lifting should probably begin with machines to train the major muscles, and then use free weights to train more specific movements.
Since RHR will decrease as cardiovascular fitness improves and HRmax can decrease with age, periodically recalculate target heart rate as you become more fit (or more sedentary) and get older. Age-predicted HRmax may be off by more than 10 to 15 beats per minute, since all people of the same age do not have the same HRmax. Therefore, it is much more accurate to directly determine HRmax with a maximum exercise test. Use HRmax, but don’t forget to consider subjective factors, such as how you feel.
When the workout goal is to increase aerobic endurance, target heart rate should be 65 to 80 percent of HRmax (about 55%-70% of HRR). During interval training, which focuses on increasing cardiovascular performance, target heart rate should be greater than 80 percent of HRmax (70% of HRR).
If the primary goal is to increase aerobic endurance or lose weight, then the client should perform cardiovascular exercise first. If the primary goal is to increase muscular strength, then the client should perform strength training first. Basically, in order to get the most out of the workout, the client should perform the most important type of exercise when he or she is not fatigued. Because many clients want to lose weight and increase muscular strength, alternating the order of the workout during different cycles of training is one way to satisfy both goals.
Abdominal crunches are just as effective as any piece of equipment to train the rectus abdominis muscle, the main muscle in the abdominal region. As our clients improve their abdominal strength, they can make crunches more demanding by performing them on a movable surface, such as a resistance ball.
Hypertrophy results from an increase in the number of contractile proteins (actin and myosin, produced by the body in response to training), which in turn increases the size of the muscle fibers.
If the training goal is hypertrophy, the load lifted should be at least 80 percent of the one-repetition maximum (1 RM), as a general guideline. If our clients are not interested in developing larger muscles, keep the load less than 80 percent of 1 RM. However, hypertrophy can be stimulated any time the training intensity is high enough to overload the muscle. Thus, in an unfit client who has never lifted weights before, 60 percent of 1 RM may be enough to cause slight hypertrophy, especially if the client is predisposed to hypertrophy by having a large proportion of fast-twitch fibers.
Activities that incorporate many muscle groups and are weight bearing use more calories per minute and are therefore better suited for fat loss than non-weight-bearing activities that do not use many muscles.
It is often assumed that low-intensity exercise is best for burning fat. During exercise at a very low intensity, fat does account for most of the energy expenditure, while at a moderate intensity, fat accounts for only about 50 percent of the energy used. However, since the number of calories used per minute is much greater at a moderate to high intensity than at a low intensity, the total number of calories expended during a moderate- to high-intensity workout is greater than it is during a low- intensity workout of the same duration; consequently, the total number of fat calories expended is also greater during the higher-intensity workout. The rate of energy expenditure, rather than simply the percentage of energy expenditure derived from fat, is important in determining the exercise intensity that will use the most fat. Furthermore, endurance-trained individuals rely less on carbohydrates and more on fat as a fuel source during submaximal exercise. Thus, the more aerobically trained our clients become, the more fat they will use during subsequent exercise sessions.
To decrease body fat percentage, our clients do not necessarily have to use fat during exercise. Much of the fat from adipose tissue (as opposed to intramuscular fat, which is primarily used during exercise) is lost in the hours following exercise. Moreover, the amount of fat lost after a workout depends, in part, on the exercise intensity during the workout. Following high-intensity exercise, the rate of fat oxidation is higher than it is following low-intensity exercise. Because clients can perform a greater intensity of work if the work is broken up with periods of rest, interval training is a great way to perform high-intensity work and help decrease body fat percentage.
Both strength training and endurance exercise have been shown to decrease body fat percentage. However, aerobic exercise appears to have a greater impact on fat loss than does strength training. A combination of endurance and strength training results in more fat loss than either exercise regimen alone, possibly because clients who perform both activities spend more time exercising.
Following eccentric exercise, both ROM and muscular force production decrease. Structural damage, altered neural activation and a disruption in calcium ion homeostasis are possible reasons for the decrease in force production that occurs with DOMS. DOMS is not associated with any long-term damage or reduced muscle function. As our clients adapt to the training load, their muscles will be less sore following a workout. Eccentric training also reduces.
As our clients age, their skin will become less elastic and thus conform less to their arms. So “flabby arms” are somewhat a product of age. Any exercise that decreases body fat percentage will help our clients lose fat on their arms, just as it will help them lose fat from other areas of the body.
Clients are often told they should not lift weights on consecutive days, whereas they are encouraged to do cardiovascular exercise as often as they can. However, there is nothing wrong with lifting weights every day, just as there is nothing wrong with running every day. Muscles do not know the difference between lifting weights or running; the only thing muscles know how to do is to contract to overcome a resistance. Whether our clients need to lift weights every day depends on their fitness goals. For basic gains in strength, our clients need to lift weights only two to three times a week. For more advanced clients, lifting weights more often is fine, and the training program can be organized using easy and hard days, just as with cardiovascular workouts. Keep in mind that some experts recommend not working the same muscle groups two days in succession, in order to give the muscles time to adapt.
Reference:
Karp, Jason PhD. “Top 10 Most Frequently Asked Questions In A Fitness Center (And Their Answers).” IDEA Health & Fitness Inc., April, 2002. December, 2013. http://www.ideafit.com/fitness-library/top-10-most-frequently-asked-questions-in-a-fitness-center-and-their-answers.